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ABSTRACT

All cellular processes are regulated by condition-
specific and time-dependent interactions between
transcription factors and their target genes. While
in simple organisms, e.g. bacteria and yeast,
a large amount of experimental data is available
to support functional transcription regulatory
interactions, in mammalian systems reconstruction
of gene regulatory networks still heavily depends
on the accurate prediction of transcription fac-
tor binding sites. Here, we present a new method,
log-linear modeling of 3D contingency tables
(LLM3D), to predict functional transcription factor
binding sites. LLM3D combines gene expression
data, gene ontology annotation and computationally
predicted transcription factor binding sites in a
single statistical analysis, and offers a methodo-
logical improvement over existing enrichment-
based methods. We show that LLM3D successfully
identifies novel transcriptional regulators of the
yeast metabolic cycle, and correctly predicts key
regulators of mouse embryonic stem cell self-
renewal more accurately than existing enrichment-
based methods. Moreover, in a clinically relevant
in vivo injury model of mammalian neurons,

LLM3D identified peroxisome proliferator-
activated receptor c (PPARc) as a neuron-intrinsic
transcriptional regulator of regenerative axon
growth. In conclusion, LLM3D provides a significant
improvement over existing methods in predicting
functional transcription regulatory interactions in
the absence of experimental transcription factor
binding data.

INTRODUCTION

Insight into gene regulatory networks is crucial for the
understanding of biological systems under normal and
pathological conditions. An important step in the
analysis of gene networks is the prediction of functional
transcription factor binding sites (TFBSs) within gene
regulatory sequences. Recently, advanced methods have
been developed to predict TFBSs in silico (1–7). Public
databases containing large collections of experimentally
validated binding sites can be used to derive probabilistic
models of TFBSs and software algorithms can subse-
quently be employed to scan potential gene regulatory
sequences for the prediction of new sites. However, in
contrast to simple model organisms such as yeast, mam-
malian gene regulatory sequences are often large and can
be located up to several thousands of base pairs away
from transcription start sites. Consequently, mammalian
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TFBS predictions are usually less accurate and more likely
to contain false positives. A reduction in false positive
TFBS predictions can be achieved by improving the
quality of the biological input data, for instance by
considering TF binding affinities (8,9), TF cooperativity
at cis-regulatory modules (10,11) or evolutionary conser-
vation of binding sites across species (12,13), or by im-
proving the way in which computational methods make
use of these data.
A common method to reduce false positive TFBS

predictions at the computational level involves the identi-
fication of TFBSs that are enriched in subsets of related
genes compared to a control (background) set of genes
(14,15). Co-regulation and co-functionality are often
used as criteria to define gene sets of interest. In order
to study enrichment of both TFBSs and gene function
in co-expressed genes, two different computational
approaches can be used. The first approach, referred to
as singular enrichment analysis (SEA) (14), allows
separate quantification of gene ontology (GO) term
and TFBS enrichment in sets of co-expressed genes
(Figure 1A). SEA typically returns separate lists of
enriched GO terms and TFBSs (16,17), but is not
designed to predict transcriptional targets using gene
expression, TFBS and GO data simultaneously.
The second approach, which we will refer to as the
multigene set by intersection (MGSI) approach, predefines
multiple sets of co-expressed genes sharing the same GO

term, and subsequently tests each set for TFBS
enrichment (Figure 1B). MGSI-based methods provide
a significant improvement over SEA and perform better
in predicting functional TFBSs (18,19). However, MGSI
collapses gene expression and GO annotation into a single
combined variable. As a result, important information
about the joint dependence of all three variables (i.e.
gene expression, GO association and TFBS presence)
is lost.

We present a novel method that uses log-linear
modeling of 3D contingency tables (LLM3D), to
identify experiment-specific associations between gene ex-
pression, TFBS presence and gene function (Figure 1C).
We show that LLM3D provides a significant improvement
over existing methods. We validate our method using pub-
lished genome-wide gene expression and transcription
factor binding data, and demonstrate that the gene regu-
latory predictions made by LLM3D have significantly
higher predictive value compared with MGSI, and are
biologically relevant, both in yeast and in mammals.
Finally, we showcase LLM3D by performing and
analyzing a genome-wide expression profiling study in a
clinically relevant animal model for the functional regen-
eration of injured neurons. Post hoc experimental valid-
ation shows that in this case LLM3D is able to identify
functional gene regulatory interactions that remain un-
detected using existing methodologies.

Figure 1. Comparison of LLM3D with other gene set enrichment analysis approaches. (A) In singular enrichment analysis (SEA), gene expression
clusters (EC) are independently tested for enrichment of binding sites (BS) and gene ontology (GO) terms using two 2D contingency tables. It is not
clear how meaningful relationships between the two should be inferred. (B) In multigene set intersection (MGSI), multiple gene sets are predefined
based on intersecting sets of co-expressed genes with sets of genes sharing GO terms. MGSI considers all three variables in a single 2D contingency
table in which gene expression and GO data are collapsed into a single combined variable. (C) In LLM3D, gene expression, binding site data and
GO annotations are used as separate input variables in a single 3D contingency table. To this table, log-linear models are fitted in order to test the
joint dependence of all three variables simultaneously.
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MATERIALS AND METHODS

LLM3D

Here, we give a brief outline of LLM3D; a detailed
description can be found in the Supplementary Methods.
For each TFBS–GO pair of interest, LLM3D
cross-classifies all genes according to observed gene ex-
pression, GO annotation and TFBS prediction to obtain
a 3D table (see Fig. 2B for an example). The rows of this
table correspond to the GO terms, the columns to the
TFBSs, and the gene expression clusters define the layers
of the table. Let mijk denote the expected number of genes
in row i, column j and layer k. Then, for a sample of genes
of size N and under the null hypothesis of complete inde-
pendence between rows, columns and layers:

log mijk ¼ Z+ai+bj+gk:

This model is called the null model (M(0)). Under the as-
sumption that the null model holds, and under multi-
nomial sampling, the likelihood of the observed data is
completely determined by the unknown parameters,
which can be estimated using maximum likelihood. Lack
of fit can be formally tested using a standard likelihood
ratio G2 statistic (20). For a 3D contingency table, there
are eight other natural models to consider. These models
differ in the parameters used to describe the expected
counts and the dependence relationships they imply
between the rows, columns and layers of the table (see
Supplementary Methods for details). For each of these
models, we estimate the parameters using maximum like-
lihood and calculate the G2 statistic. Next, we select the
model that best describes the observed data using Akaike’s
information criterion (AIC) (21), which can be calculated
from G2 and the degrees of freedom of the model. For
re-analysis of yeast metabolic cycle data and mouse ES
cell data, we considered all models with at least two
two-way (first order) interactions, i.e. M(4), M(5), M(6),
M(7) and M(S). For analysis of the neuronal regeneration
data we only considered models with all pairwise inter-
actions and the saturated model, i.e. M(7) and M(S).

Selection and visualization of biologically relevant TFBSs

An enrichment score is used to quantify the relative en-
richment of target genes in different expression clusters
and to filter and visualize LLM3D results. For K different
expression clusters, the enrichment of target genes that
belong to a certain GO class and have a certain TFBS is
calculated as follows. For k=1,. . .K, let nk denote the
observed number of genes in the corresponding cell of
the table, and mk

M(0) the expected number of genes in
that cell under the assumption that model M(0) holds.
We then use

ek ¼
nk � m̂

M 0ð Þ
kffiffiffiffiffiffiffiffiffiffiffiffi

m̂
M 0ð Þ
k

q

as a measure of enrichment of target genes in cluster k for
a TFBS–GO pair of interest. Values of ek with a positive
sign indicate enrichment, whereas a negative sign indicates

depletion. The set of predicted target genes for a given
TFBS–GO pair is then defined as the union of sets of
TFBS–GO genes in all clusters with a positive ek. For
any two clusters k1 and k2 of interest, relative enrichment
is assessed in cluster k1 with respect to k2 using a score s
that compares ek1 and ek2, where

sk1k2 ¼

0, if ek1 < 0 and ek2 > 0
0:5, if ek1 < 0 and ek2 < 0
ek1= ek1+ek2

� �
, if ek1 > 0 and ek2 > 0

1, if ek1 > 0 and ek2 < 0

8>><
>>:

Next, all significant TFBSs predicted by LLM3D are
ranked according to the sample variance of their sk1k2
scores over all associated GO terms, and the top-ranked
TFBSs are then selected as the ones with the most
between-cluster-specific regulatory potential. The sk1k2
scores can be visualized in a heat map (see for example
Figure 5B).

MGSI

For any given gene expression cluster and GO term,
MGSI first generates a new gene set by intersecting the
genes in the expression cluster with the set of genes
annotated to the GO term. Enrichment of any TFBS in
this new set is tested using a Fisher’s exact test (one-sided)
for 2D contingency tables. A Benjamini Hochberg correc-
tion is applied to the resulting P-values to correct for
multiple testing with the aim of controlling the false dis-
covery rate (FDR) at 10%.

Yeast TFBS annotation

Yeast ORF sequences with introns and untranslated
regions 1000 bp immediately upstream of the initial
ATG were downloaded from the Saccharomyces
Genome Database (SGD) on http://www.yeastgenome
.org. Log-odds matrices representing probabilistic
models for binding sites, 124 in total, were downloaded
from http://fraenkel.mit.edu/improved_map/ and con-
verted to probability matrices to be used with the
Motifscanner tool (1). Motifscanner was used to compu-
tationally predict binding sites for all TFs on both DNA
strands with the ‘prior probability’ parameter set to 0.15.
A third-order Markov background model was generated,
trained on the SGD sequences with the accompanying
CreateBackgroundModel tool.

Mammalian TFBS annotation

Gene regulatory sequences (5000 bp upstream to 2000 bp
downstream of the predicted transcription start site) for all
human, mouse and rat genes identifiable by Entrez Gene
ID were downloaded using the biomaRt package under R.
Potential TFBSs were predicted in silico using all 214 ver-
tebrate non-redundant position weight matrices in the
TRANSFAC Professional database (release 11.1) (22)
and the supplied MATCH-tool (5) with parameters set
to minimize false positives. The MATCH output was
used to create a binary matrix with rows corresponding
to regulatory sequences and columns corresponding to
TRANSFAC matrices. In this matrix, ‘1’ represents
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Figure 2. LLM3D correctly infers gene regulatory interactions from yeast metabolic cycle gene expression data. (A) Schematic representation of the
yeast metabolic cycle. The three phases of the cycle (Ox, Rb and Rc) are indicated together with the biological processes that dominate each phase.
(B) Example contingency tables demonstrating the LLM3D approach. LLM3D detects a significant interaction of ACE2 binding sites with ‘mitosis’
GO genes in yeast metabolic cycle gene expression clusters, whereas MGSI does not (P: present; A: absent; see text for details). The highest
enrichment of ACE2/‘mitosis’ genes is observed in the Rb expression cluster (green box), which corresponds with the mitotic phase of the cycle.
(C) Sensitivity (Sn) of LLM3D and MGSI with respect to predicting transcriptional regulators in the yeast metabolic cycle. LLM3D shows higher Sn
values compared with MGSI, even when the stringency of the latter is reduced to a P-value cut-off of 0.05 without correction for multiple testing.
(D) Correlation coefficient (CC) of LLM3D and MGSI predictive performances. (E) Average site performance (ASP) of LLM3D and MGSI. (F) List
of the top-four LLM3D-predicted TFs per expression cluster for which at least five additional true positive targets are predicted compared with
MGSI, together with their associated GO-terms.
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the presence of at least one predicted TFBS, whereas ‘0’
represents the absence of predicted TFBSs. In addition,
all human, mouse and rat genes in LLM3D were also
annotated with human/mouse/rat (HMR) conserved
TFBSs downloaded from http://genome.ucsc.edu/. This
allows LLM3D analysis to be limited to evolutionary
conserved binding sites only. For the mouse ES cell data
analysis, 12 additional TFBS motif models were used
that were derived from chromatin immunoprecipitation
(ChIP)-Seq data (23). FIMO, part of the MEME
software suite (24), was used to predict TFBS occurrences
for these 12 TFs in regulatory sequences of all known
mouse RefSeq genes (UCSC, NCBI36/mm8 assembly).

GO pre-selection

Yeast GO annotation data were extracted from the
R-package ‘org.Sc.sgd.db’, which was downloaded from
http://www.bioconductor.org. GO biological process an-
notations for human, mouse and rat genes were retrieved
from http://www.geneontology.org/. Informative GO
terms were selected as follows. For any GO term i, let
GO(i) be the set of genes whose annotation contains
term i and let N(i) be the size of that set. We let Child(i)
denote the set of children of i in the directed acyclic GO
graph. Let M(i) be the maximum over N(r), for terms r in
Child(i). For any positive number g and any term i, we
now say that i is the most informative GO term at level g if
N(i)� g and M(i)< g. For analysis of the yeast metabolic
cycle data, we considered all most informative GO terms
at level 20. For the analysis of the mouse ES cell data
and the rat neuronal regeneration data, we selected most
informative GO terms at level 50. As an alternative to
reduce redundancy in the selection of GO terms, the
LLM3D R-package allows for the use of GO slim terms.

Yeast metabolic cycle data

For analysis of the yeast metabolic cycle data, we used
the original clustering (25). The MRM refined regulatory
map providing true interactions between TFs and target
genes based on ChIP-chip data (26) was downloaded
from http://fraenkel.mit.edu/improved_map/. True TF–
target gene interactions reported in the YEASTRACT
database (27) were downloaded from http://www
.yeastract.com. For validation of predicted regulatory
interactions we used a ‘RegulationMatrix’ containing all
documented regulatory interactions in eiter MRM or
YEASTRACT.

Mouse embryonic stem cell data

For analysis of the mouse embryonic stem (ES) cell data,
we used the gene expression clusters defined by Ouyang
et al. (28). TF association strength (TFAS) scores as
computed by Ouyang et al. (28) were used for all RefSeq
genes to define target genes for all 12 TFs. Genes with a
positive TFAS were defined as true targets.

Animals and surgical procedures

Adult Wistar rats (�220 g; Harlan, The Netherlands) were
subjected to either sciatic nerve (SN) or dorsal root (DR)

crush as described previously (29) and in approval with
the KNAW animal experimentation committee for animal
welfare. L4–6 DRGs were isolated at 12, 24, 72 h and
7 days after surgery. Animals were independent from
our previous microarray study, and we used three
animals per time point in order to obtain three independ-
ent biological replicates. Control DRGs were obtained
from three uninjured animals.

Microarray hybridization, normalization and analysis

Total RNA was isolated from L4, L5 and L6 DRGs using
Trizol (Invitrogen; Carlsbad, CA, USA). RNA from three
control animals was pooled prior to the labeling to serve
as a common reference sample. RNA samples were
amplified, labeled and hybridized to Agilent 44K rat
whole-genome expression arrays using standard Agilent
protocols (Agilent; Santa Clara, CA, USA). Arrays
were scanned using an Agilent scanner and data were
read using Agilent Feature Extraction software. Array
data were further processed using the R-packages
Bioconductor (30) and limma (Linear Models for
Microarray Data) (31) for standard background subtrac-
tion and loess normalization. For statistical analyses, we
used the Bayesian approach for microarray time course
data developed by Angelini et al. (32,33). This algorithm
is implemented in a Matlab executive, termed Bayes
analysis of time-series (BATS). Heat maps and hierarch-
ical clusters were generated using TIGR MeV software
(http://www.tm4.org/mev.html). Primary microarray
data have been submitted to GEO (http://www.ncbi.nlm
.nih.gov/geo/; accession number GSE 21007).

Expression clusters

The log-fold gene expression change (relative to control;
averaged over three replicates per time point) in both ex-
periments (SN and DR crush) was calculated for each
gene. Expression data from significantly regulated genes
following SN and DR crush were analyzed separately
using a standard principal component analysis algorithm
under R. For each gene, we used the coefficient corres-
ponding to the first principal component to further define
two homogeneous gene expression clusters: one contain-
ing genes that are either up-regulated after DR crush or
down-regulated after SN crush (DR> SN), and one con-
taining genes that are either up-regulated after SN crush
or down-regulated after DR crush (SN>DR). For a small
group of genes that were significantly regulated following
both crushes and for which the dominant direction
of log-fold change (i.e. either up- or down-regulation)
coincided in both experiments, we compared the average
log-fold change of expression following SN and DR crush
directly for classification into (DR> SN) or (SN>DR).

Cell culture and neurite outgrowth assays

F11 cells were maintained as previously described (29).
For pharmacological stimulations F11 cells were plated
in 96-well plates. Medium was replaced with DMEM con-
taining 0.5% FCS, and 1 mM of PPAR agonist (ciglitazone
for PPARg and Wy-14643 for PPARa) or antagonist
(GW9662 for PPARg and GW6471 for PPARa; all from
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Sigma-Aldrich, St Louis, MO, USA) was added. Cells
were fixed 2 days later and stained with anti-beta-
III-tubulin (Sigma-Aldrich). Neurite outgrowth was
quantified using a Cellomics ArrayScan HCS Reader
and the Neuronal Profiling 3.5 Bioapplication (Cellomics
Inc., Pittsburgh, PA, USA). Per well 500–1000 cells were
analyzed and neurite total length per cell was calculated.
For statistical analysis, the average neurite total length for
five wells was compared between experimental and control
conditions and a Student’s t-test was used to determine
significance. Eperiments were replicated at least four
times. Dissection and dissociation of primary adult
DRG neurons was carried out as described (29). After
40 h in culture neurons, were fixed and immunostained
with anti-beta-III-tubulin. The longest neurite of each of
100–200 neurons was measured using the ImageJ Simple
Neurite Tracer plugin.

RNA interference

F11 cells were transfected with Dharmacon siGENOME
siRNA SMARTpools (Supplementary Table S6) using the
DharmaFECT 3 transfection reagent as previously
described (34). Neurite outgrowth was quantified two
days later using a Cellomics ArrayScan HCS Reader as
decribed above. Experiments were replicated at least three
times and representative data were selected for represen-
tation. For statistical analysis, neurite lengths were first
normalized against untreated control cells (within plate
normalization) in order to compare experiments over
time (between plates). Next, one-way ANOVA followed
by a Dunett’s post hoc test was used to determine signifi-
cance against control siRNA-transfected cells.

ChIP and quantitative (RT–)PCR analysis

F11 cells were plated in 15-cm plates, and stimulated with
10 mM forskolin and 10 mM ciglitazone or DMSO as
control for 24 h. Chromatin of F11 cells was then
cross-linked with 1% formaldehyde for 10min and subse-
quently quenched with 125mM glycine for 5min. Cells
were washed with cold PBS, nuclei were extracted with
cell lysis buffer (10mM EDTA, 10mM HEPES, 0.25%
Triton X-100) and lysed with SDS lysis buffer (1% SDS,
10mM EDTA in 20mM Tris–HCl). Cross-linked chroma-
tin was sheared with four pulses of 15 s yielding prod-
ucts of 200–1000 bp in length. Immunoprecipitation
was performed with anti-PPARg (H-100, Santa Cruz
Biotechnology) overnight with rotation at 4�C.
Immuno-complexes were then captured with protein A/
G beads (Santa Cruz Biotechnology) pre-incubated with
sonicated salmon sperm DNA. Complexes were washed
and eluted with elution buffer (1% SDS, 100mM
NaHCO3). The eluates were proteinase K treated
(215mg/ml) and incubated at 65�C for overnight. DNA
was purified by phenol/chloroform isolation and subse-
quent ethanol precipitation. Quantitative PCR was per-
formed using site-specific primers in duplicate on a
Roche LightCycler with 2� SYBR green ready reaction
mix (Applied Biosystems). Normalized enrichment values
were calculated by subtracting the Ct value of the IP
sample from the Ct value of the mock IP samples, each

normalized to the input sample. Promoter regions with
>1.5 log-fold enrichment were considered as true
targets. For gene expression level measurements, RNA
was isolated from F11 cells using Trizol and
reverse-transcribed into cDNA as previously described
(29). Ct values were normalized to Gapdh and Nse as ref-
erence genes. Fold changes were calculated relative to
DMSO-treated cells. Specificity of all primers was
checked by visual inspection of dissociation curves.

RESULTS

LLM3D: a methodological and statistical improvement
in gene set enrichment analysis

Input to the main statistical analysis in LLM3D is a
defined set of gene expression clusters, TFBSs and GO
terms. For each TFBS–GO pair of interest, LLM3D
cross-classifies all genes according to GO annotation,
TFBS presence, and gene expression to obtain a 3D con-
tingency table (Figure 1C). The main statistical analysis of
LLM3D consists of finding the best model that describes
the observed counts in this table. The most basic model,
i.e. the model that assumes that gene expression, GO an-
notation and TFBS presence are mutually independent, is
referred to as the null model (M(0)). The underlying hy-
pothesis of mutual independence is tested using a likeli-
hood ratio test statistic (20). When this hypothesis is
rejected, LLM3D considers eight alternative models that
differ in the dependence relationships they imply between
gene expression, GO annotation and TFBS presence, and
then selects the best model using the Akaike information
criterion (AIC) (21). Models M(1), M(2) and M(3) all
predict that one variable is independent of the other
two. For instance, model M(1) predicts that gene expres-
sion and GO variables are dependent, but that TFBS
presence is independent of gene expression and GO.
Whenever LLM3D selects one of these three models, we
conclude that there is no functional interaction between
TFBS, gene expression and gene function. Models M(4),
M(5), M(6), M(7) and M(s) on the other hand all imply
mutual dependencies between gene expression, GO anno-
tation and TFBS presence (see Supplementary Methods
for details), and are used by LLM3D to predict functional
gene regulatory interactions. LLM3D next calculates for
each predicted TFBS the relative enrichment of target
genes in the different clusters using a model-based score
that is used both to rank and visualize the results of the
analysis. Because LLM3D considers all three variables
jointly, we expect it to perform better in comparison
with existing enrichment-based methods. A detailed de-
scription of LLM3D is provided in the Supplementary
Methods. LLM3D is available as an R-package.

Identification of functional gene regulatory interactions
in yeast

We used both LLM3D and MGSI to predict gene regula-
tory interactions controlling the yeast metabolic cycle.
It is estimated that approximately half of all yeast genes
show periodic expression during the metabolic cycle.
These genes can be divided into three large expression
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clusters of tightly co-regulated genes: oxidative (Ox; 1023
genes), reductive/building (Rb; 977 genes) cluster, and re-
ductive/charging (Rc; 1510 genes) (25) (Figure 2A). The
principal difference between LLM3D and MGSI is
depicted in Figure 2B. In the given example, ACE2
binding sites are not detected in association with
‘mitosis’ genes in the three yeast metabolic cycle expres-
sion clusters separately by MGSI, whereas LLM3D
reveals a significant association of ACE2 binding sites
with ‘mitosis’ genes considering all expression clusters sim-
ultaneously. The enrichment of ACE2/‘mitosis’ genes is
highest in the Rb cluster, which is consistent with the
fact that cell division is initiated during the Rb phase of
the cycle (Figure 2A).

To compare MGSI and LLM3D performance, we only
considered the top-20 TFs for which both methods pre-
dicted significant TF–target gene associations. We next
used in vivo yeast TF–target gene interactions reported
in the MacIsaac refined regulatory map (MRM) (26) to
determine whether these predictions are either true or
false. Under the assumption that MRM contains true
TF–target gene interactions, predictive performance can
be evaluated using the performance quality statistics
proposed by Tompa et al. (12). We calculated the sensi-
tivity (Sn), the correlation coefficient (CC) and average
site performance (ASP), both for MGSI and for
LLM3D. The ASP statistic in particular summarizes the
overall quality of the predictions, and provides a good
measure of predictive performance.

On average, LLM3D achieved a considerable increase
in predictive performance compared with MGSI at
an equivalent FDR of 10% (Figure 2C–E). LLM3D
showed increased Sn values, even when the original and
less stringent MGSI P-values were used (P< 0.05) without
correction for multiple testing (Figure 2C). This increase
in sensitivity did not simply result from an overall increase
in TF–target gene predictions, as the observed average
ASP values were also consistently higher [0.34 for
LLM3D compared to only 0.24 (q< 0.1) or 0.27
(P< 0.05) for MGSI; Figure 2E], indicating that
LLM3D predictions have higher true/false positive ratios
than MGSI predictions. In addition, a modest increase in
CC values was observed compared with MGSI predic-
tions, only when the latter were appropriately corrected
for multiple testing (Figure 2D). A more detailed evalu-
ation of predictive performance for all 20 TFs tested is
provided in Supplementary Table S1. Results reported in
Figure 2 and in Supplementary Table S1 were obtained
using MRM as the repository of true interactions. Similar
results were obtained using the YEASTRACT biblio-
graphic repository of true TF–target gene interactions
(27) (Supplementary Table S2). Thus, using two different
sources of true TF–target gene interactions, LLM3D
provides a significant improvement in predictive perform-
ance compared with MGSI.

To evaluate LLM3D performance from a functional
perspective, we next selected for each expression cluster
the four TFs that have the largest contribution to the
increase in true positive TF–target gene predictions com-
pared with MGSI. In addition to well-known key regula-
tors of the metabolic cycle (e.g. SKN7 and FKH1) (35),

this list contains several potential novel cluster-specific
regulators, such as RAP1, FHL1, HAP1, REB1 and
UME6 (Figure 2F). Importantly, the GO terms that are
associated with these TFs all correspond with the biologic-
al processes that characterize each cluster (Figure 2A).
Interestingly, both RAP1 and FHL1 were recently impli-
cated in growth-rate dependent changes in ribosome syn-
thesis (36), which confirms their predicted relative
importance in the Ox cluster. In conclusion, LLM3D
achieves a significant gain in statistical power and im-
proved predictive performance compared with existing
methods with respect to the detection of functional
TF–target gene interactions in yeast.

Identification of functional gene regulatory interactions
in mouse ES cells

We next wanted to test LLM3D performance on mamma-
lian gene expression data. We used both LLM3D and
MGSI to predict the transcriptional regulation of genes
that are involved in controlling self-renewal and differenti-
ation ofmouse ES cells. Ouyang and colleagues (28) defined
four clusters of genes with characteristic expression
patterns in ES cells. These clusters are based on combined
RNA-Seq data (37) and gene expression microarray data
(38). The first two clusters include genes that are either
induced (uniform high; 668 genes) or repressed (uniform
low; 838 genes) in both ES cells and differentiated cells.
The other two clusters include genes that are either
upregulated (Es up; 782 genes) or downregulated (Es
down; 831 genes) in ES cells only (Figure 3A).We restricted
our analysis to 12 TFs that are known to play a role in ES
cell biology and for which genome-wide ChIP-Seq binding
profiles are available (23). This allowed us to define true
targets and to benchmark LLM3D predictive performance
as we did for the yeast metabolic cycle data.
Again, LLM3D showed a significant increase in true

positive predictions and in Sn, CC and ASP values
(Figure 3B–D; Supplementary Table S3). Importantly,
LLM3D predicted a significant role for two key regulators
of ES cell self-renewal, Oct4 andNanog, whereasMGSI did
not. In addition to Oct4 and Nanog, the highest increase in
true positive predictions was observed for Esrrb. For these
three TFs, LLM3D predicted the same cluster-specific GO
associations (Figure 3E). These GO terms indeed reflect the
cluster-specific biological processes identified by Ouyang
et al. (28), i.e. ‘development’ and ‘morphogenesis’ in the
ES up and ES down clusters, ‘translation’ and ‘metabolism’
in the uniform high cluster, and ‘response to stimulus’ in the
uniform low cluster (Figure 3A). Our findings corroborate
earlier reports that Oct4, Nanog and Esrrb regulate ES cell
gene expression in a combinatorial manner, and that they
can either activate or repress genes depending on the
context (28). Thus, LLM3D provides improved detection
of functional gene regulatory interactions in mammalian
gene expression data.

Identification of transcriptional regulators of neuronal
regeneration

We next used LLM3D to predict transcriptional regula-
tory interactions underlying neuronal regeneration.
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We first generated genome-wide expression profiles of
dorsal root ganglion (DRG) neurons following nerve
damage (Figure 4A). DRG neurons extend one peripheral
axon into the spinal nerve and one central axon into the
DR. The peripheral axon regenerates vigorously; while in
contrast, the central axon has little regenerative capacity.

For this study, two groups of animals were subjected
either to SN or DR crush, and at 12, 24, 72 h and
7 days after the crush, lumbar DRGs L4, L5 and L6
were dissected and total RNA was extracted. Samples
were then processed and hybridized to Agilent 44K rat
whole-genome arrays. Bayesian analysis of time-series
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Figure 3. LLM3D correctly infers gene regulatory interactions from mouse ES cell self-renewal gene expression data. (A) Schematic representation of
ES cell self-renewal and differentiation. Indicated are the four gene expression clusters (ES up, ES down, uniform high and uniform low) identified by
Ouyang et al. (28) together with the biological processes that dominate each cluster. (B) Sensitivity (Sn) of LLM3D and MGSI with respect to
predicting transcriptional regulators in mouse ES cells. LLM3D shows higher Sn values compared with MGSI, even when the stringency of the latter
is reduced to a P-value cut-off of 0.05 without correction for multiple testing. (C) Correlation coefficient (CC) for LLM3D and MGSI predictive
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expression cluster.
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(BATS) (32,33) was used to identify 2845 genes that are
significantly regulated after SN crush and 2775 genes that
are significantly regulated after DR crush relative to
control (Supplementary Table S4; GEO accession
number GSE21007). Out of the 4735 regulated genes in
total, only 885 genes were regulated in both crush para-
digms and 3850 were regulated in a paradigm-specific
manner (Figure 4B), which confirms the notion that SN
and DR crush elicit very distinct gene expression re-
sponses in DRG neurons (29). In line with previous gene
expression studies (29,39–41), we find a strong and SN
crush-specific up-regulation of regeneration-associated
genes, including Atf3, Pap, Vip, Npy, Gal, Tgm1, Csrp3,
Ankrd1, Gadd45a and Vgf (Figure 4C; Supplementary
Table S4).

We separated all 4735 regulated genes into two distinct
expression clusters: one cluster of genes that are higher
expressed after SN crush than after DR crush (named
SN>DR), and one cluster of genes that are higher ex-
pressed after DR crush than after SN crush (named
DR> SN) (Figure 5A). We next used LLM3D to predict
transcription regulatory interactions underlying each gene
expression cluster. After correction for multiple testing,

predicted TFBSs were ranked based on cluster-specific en-
richment, and the 50 TFBSs with the highest gene
cluster-specific regulatory potential were selected. These
50 TFBSs include 27 that were only identified by
LLM3D, and not by MGSI (Figure 5B).
In the absence of a repository for true positive TF–

target gene interactions, we decided to test whether any
of the TFBSs that were identified exclusively by LLM3D
could reflect functional gene regulatory interactions in the
context of regenerative axon growth. We used F11 cells as
an in vitro model. F11 cells are neuroblastoma cells
derived from rat embryonic DRG neurons (42). They
express many DRG neuron markers (43,44) and display
cAMP-induced neurite outgrowth (45). We previously
showed that DRG regeneration-associated TFs also are
important for F11 neurite outgrowth (29,34). For the 27
TFBSs that were exclusively identified by LLM3D, we
could unequivocally identify 18 corresponding rat TFs.
RNAi-mediated knockdown of eight of these TFs in F11
cells resulted in a significant increase or decrease in neurite
outgrowth (Figure 6). These findings demonstrate that
LLM3D identified functional gene regulatory interactions
that remained undetected by MGSI.
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Figure 4. Genome-wide identification of regeneration-associated genes. (A) Schematic representation of the sensory-motor neuron circuitry and the
location of the DRG. A dorsal root crush injures the central projections of DRG sensory neurons, whereas a peripheral nerve crush injures the
peripheral projections of the same neurons. (B) Venn diagram showing the number of significantly regulated genes identified in each crush paradigm.
The relatively small overlap indicates that SN and DR crush elicit distinct gene responses in DRG neurons. (C) Heat map showing expression
profiles of all significantly regulated genes after SN or DR crush.
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PPARc is a repressor of neuronal
regeneration-associated genes

Because PPAR binding sites were detected in ‘neuron dif-
ferentiation’ GO genes (Figure 5B) and knockdown of
PPARg strongly and significantly reduced neuronal differ-
entiation of F11 cells (Figure 6), we decided to study the
role of PPAR TFs in neuronal regeneration in more detail.
Most predicted PPAR target genes are expressed in
neurons (Supplementary Table S5), which suggests that

PPAR TFs may enhance regeneration by regulating the
expression of neuron-intrinsic regeneration-associated
genes. Therefore, we tested the effects of different PPAR
agonists and antagonists on neurite outgrowth from F11
cells and from primary adult DRG neurons. Stimulation
of PPARg, but not PPARa, stimulated neurite outgrowth
from primary DRG neurons and from F11 cells, whereas
blocking PPARg, but not PPARa, inhibited neurite out-
growth in both cell types (Figure 7A–D). These findings
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show that activation of PPARg in primary adult DRG
neurons, which closely resemble the in vivo DRG regener-
ation paradigm (29,34), stimulates neurite outgrowth.
Primary DRG cultures are however mixed neuron/glia
cultures, and the effects of PPARg activation or inhibition
on DRG neuron outgrowth might be indirectly mediated
by glial cells. F11 cell cultures on the other hand contain
no glia, and the fact that we could replicate our results in
F11 cells indicates that PPARg is a neuron-intrinsic stimu-
lator of neurite outgrowth.

To test whether PPARg binds directly to the promoters
of predicted target genes, we next performed quantitative
ChIP. F11 cells were stimulated with the PPARg agonist
ciglitazone or with DMSO (control) and chromatin
complexes were cross-linked after 24 h and subjected to
ChIP using an antibody specific for PPARg. Immuno-
precipitated DNA was then analyzed using quantitative
PCR. PCR primers were designed to recognize �100 bp
promoter regions containing the predicted PPAR binding
sites for nine randomly chosen predicted target genes. As
negative controls we used primers recognizing promoter
regions of Icer and JunD that lack PPAR binding sites.
For seven promoter regions tested, we found a specific
interaction with PPARg, which in most cases was

further induced by ciglitazone (Figure 7E). These
findings indicate that LLM3D predicts within a given
functional context (i.e. neuron differentiation) PPARg
target gene interactions with an accuracy of >75%.
We finally measured the effect of ciglitazone on the ex-

pression of the five predicted target genes that show the
highest PPARg binding. Quantitative PCR measurements
indicate that activation of PPARg with ciglitazone sig-
nificantly reduces the expression of three of these genes
(Figure 7F), which demonstrates that PPARg acts as
a ligand-dependent repressor of gene expression.
Importantly, PPARa agonist Wy-14643 did not affect
gene expression levels, nor did any of the pharmacons
affect the expression levels of PPARg (Figure 7F).

DISCUSSION

Reverse engineering transcriptional regulatory networks
from experimental data presents great challenges, particu-
larly in higher organisms. As more genome-wide gene ex-
pression and functional data sets become available, there
is a growing need for computational methods to analyze
these data and accurately infer regulatory relationships
from them. Of particular interest are those methods that
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automatically generate experimentally testable hypotheses
regarding the direct regulation of genes by DNA binding
TFs. Combining heterogeneous sources of information,
including genome-wide gene expression data, DNA
sequence information and functional annotation, may
prove to be essential to accurately predict true regulatory
relationships. Indeed, current methods that allow the
integration of gene expression data, TFBS motifs and
ChIP data predict TF–target gene interactions with high
accuracy (46-48). For mammalian systems, however, high
quality experimental TF binding data is often lacking or
available for a few TFs only. Here, we present a new
method that can be used when no experimental TF
binding data is available, and that offers a significant im-
provement over currently used enrichment-based
methods. We show that our method can be applied to
predict novel, condition-specific sets of transcriptional
targets in the context of the complexity of the mammalian
genome.
The main limitation of existing methods is that they do

not model the joint dependence between gene expression,
TFBS presence and gene function. SEA-based methods
for instance produce lists in which enriched TFBS and
GO terms occur separately. From such lists it is unclear

how GO terms and TFBS are jointly related to the gene
sets of interest, and thus it is not possible to directly use
SEA results to predict functionally homogenous sets of
TF target genes. MGSI-based methods on the other hand
try to circumvent this problem by using pre-defined
GO-expression gene sets, and subsequently test these
sets for enrichment of TFBSs. Although it makes sense
to search for TFBS enrichment in functionally homoge-
neous sets of co-expressed genes, there are important
conceptual problems with this approach that compromise
the analysis and adversely affect the power to detect
biologically meaningful associations. For instance,
MGSI does not really consider gene expression, TFBS
presence and GO annotation jointly, but rather collapses
gene expression and GO annotation into a single
combined variable before computational analysis. Thus,
important information about the joint dependence of all
three variables is lost. Moreover, by analyzing multiple
disjoint gene expression clusters, MGSI aggravates the
multiple-testing problem because separate tests are per-
formed for each cluster. LLM3D efficiently deals with
both problems; it allows modeling of the joint distribu-
tion between all variables and reduces the number of
tests to be performed.
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Figure 7. Experimental validation of PPARg binding sites in regeneration-associated genes. (A) F11 cells treated with PPARg agonist ciglitazone
show increased neurite outgrowth, whereas cells treated with PPARg antagonists GW9662 show decreased neurite outgrowth. Scale bar: 200mm.
(B) Similar results were obtained for cultured primary adult DRG neurons. Scale bar: 200mm. (C) Quantification of the effects of ciglitazone and
GW9662 on F11 cell neurite outgrowth. (D) Quantification of the effects of ciglitazone and GW9662 on primary DRG neurite outgrowth. Note that
PPARa agonist Wy-14643 and antagonist GW6471 do not affect neurite outgrowth. (E) PPARg binds to the promoters of predicted ‘neuron
differentiation’ target genes. Anti-PPARg immunoprecipitated chromatin from F11 cells treated with DMSO (negative control; white bars) or
PPARg agonist ciglitazone (blue bars) was quantified by PCR using site-specific primers. Icer and JunD were included as negative control genes.
All predicted target genes tested, except Pick1 and Ptpn11, show PPARg binding above background (dashed line), and for most genes this binding
was strongly enhanced by ciglitazone. (F) Three out of the top-5 PPARg-binding genes show a significant reduction in expression after ciglitazone
treatment (blue bars) compared with DMSO treatment (white bars). PPARa agonist Wy-14643 did not affect gene expression levels (green bars), nor
did ciglitazone or Wy-14643 affect the expression levels of PPARg. Bars represent means±SD; *P< 0.01; n.s., not siginificant.
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We validated LLM3D performance using published
yeast and mammalian gene expression and TF binding
data sets. In yeast metabolic cycle gene expression
clusters, LLM3D detects experimentally validated
TFBSs that remain undetected using MGSI. Moreover,
for most of these TFBSs, the true positive target gene
prediction rates are significantly higher than found with
MGSI. A similar increase in performance of LLM3D
compared with MGSI was observed for mouse ES cell
gene expression data. Although true positive rates did
not increase as much as in the yeast example, LLM3D
was uniquely able to identify target gene interactions for
classical key regulators of the cell cycle (i.e. Nanog and
Oct4) and showed significantly improved target gene de-
tection for several other TFs (e.g. Esrrb, E2f1 and Stat3).
Importantly, in both the yeast metabolic cycle data and
the mouse ES cell data, LLM3D identified known and
novel TFs in association with GO terms that reflect the
biological processes underlying each expression cluster.
We conclude that LLM3D not only provides a significant
computational improvement over MGSI, but it also
detects biologically relevant TF–target gene interactions,
both in yeast and in mammals.

Although, we demonstrate improved predictive per-
formance for LLM3D compared with MGSI, we also
noticed a significant increase in false-positive predictions.
This is most likely due to the fact that LLM3D is able to
detect TFBS enrichments originating from weak TF–
target gene interactions that are surrounded by noise. To
be able to increase specificity, we have implemented the
possibility to restrict LLM3D analysis to human/mouse/
rat (HMR) conserved binding sites. Also, a post hoc pro-
cedure has been included to select for TF–target gene
interactions that show the highest gene cluster-specific en-
richment. Both options may be used to decrease false
positive levels and consequently improve the specificity
of LLM3D.

We next used LLM3D to identify gene regulatory inter-
actions underlying neuronal regeneration. We first used
microarray analysis to define two clusters of genes
with differential expression in DRGs during either suc-
cessful or unsuccessful axonal regeneration. Out of 50
LLM3D-predicted TFBSs that showed the highest gene
cluster-specific enrichment, 27 were identified exclusively
by LLM3D. For these 27 TFBSs, we could identify 18
corresponding rat TFs, 8 of which significantly increased
or decreased neurite outgrowth after siRNA-mediated
knockdown in F11 cells. Most notably, knockdown of
AHR, ARNT and HIF1a, which are structurally related
bHLH TFs involved in the cellular response to hypoxia
(49), all strongly enhanced neurite outgrowth, whereas
knockdown of PBX1, HIC1 and PPARg strongly
reduced neurite outgrowth. Thus, LLM3D identified po-
tential novel TFs and transcriptional regulatory pathways
involved in neurite outgrowth.

We decided to focus on one of these newly identified
TFs, i.e. PPARg. Recent work showed that PPARg is ex-
pressed in several neuronal cell lines and may promote
differentiation and neurite outgrowth (50,51). Moreover,
activation of PPARg in spinal cord injury models has
beneficial effects on the functional outcome (52,53), but

it is not clear whether these effects are directly on the
damaged neurons, or whether PPARg reduces the second-
ary inflammatory response (54). Our results add to these
findings, and show that PPARg, but not PPARa, stimu-
lates neurite outgrowth of DRG neurons. Moreover, this
effect of PPARg is neuron-intrinsic since we also observe
it in DRG-like F11 cells, which in the presence of
forskolin acquire a neuronal phenotype. Activated
PPARg binds to promoters of predicted target genes and
reduces their expression. Importantly, several predicted
PPARg target genes are known inhibitors of neurite out-
growth (e.g. Rtn4rl2, Slit1,Hes5; see Supplementary Table
S5), which suggests that PPARg promotes neurite out-
growth by repressing growth-inhibitory genes. At this
moment we can only speculate about the relevance of
these findings for neuronal regeneration in vivo. The
primary ligands of PPARg are polyunsaturated fatty
acids (55). Following nerve crush and degeneration of
the myelin sheath, free myelin lipids are taken up by
macrophages and released again as fatty acids to be
incorporated into the newly forming myelin sheath (56).
Injured axons might benefit from fatty acid production in
the damaged nerve, and the neuron-intrinsic lipid sensing
properties of PPARg may play an important role in con-
veying injury signals from the crush site to the nucleus.
This hypothesis is supported by several reports showing
beneficial effects of fatty acids on neurite outgrowth
in vitro (57,58) and on neuronal regeneration in vivo
(52,53), and the induction of fatty acid binding proteins
in regenerating axons (59).
One of the challenges left unaddressed in the current

implementation of our method is that transcriptional
regulation in higher organisms is believed to be highly
combinatorial, and that the spatiotemporal expression of
genes is influenced by multiple regulatory TFs that form
complexes at multiple TFBSs. Although some basic
models for the cooperative effect of multiple TFs on the
expression of target genes have been suggested
(10,35,60,61), in general the cis-regulatory grammar
underlying gene regulation is still poorly understood.
Moreover, combinatorial models of gene regulation are
difficult to validate and the effect of different TFs on
target genes is therefore most often studied independently.
As soon as reliable and genome-wide descriptions of cis-
regulatory modules become available, this information
can easily be incorporated into LLM3D to allow
modeling of cis-regulatory modules in addition to individ-
ual TFBSs. For instance, Robertson et al. (62) described a
database system (cisRED) that currently allows genome-
scale mapping of small regulatory modules. Binary pre-
dictors for the presence or absence of such regulatory
modules can be used by LLM3D in the same way as we
used TRANSFAC motifs in the present study.
In conclusion, LLM3D provides an important improve-

ment over existing computational methods in identifying
functional TFBSs from gene expression data. Its unique
property of testing the joint association between multiple
features (e.g. gene expression, gene function and TFBS
occurrence) based on one table allows further generaliza-
tion to tables with more dimensions including additional
relevant gene attributes. The implementation of such
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multidimensional computational methods will be of
critical importance in order to extract biologically mean-
ingful information from the increasing number, size and
diversity of data sets generated by biologists.
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